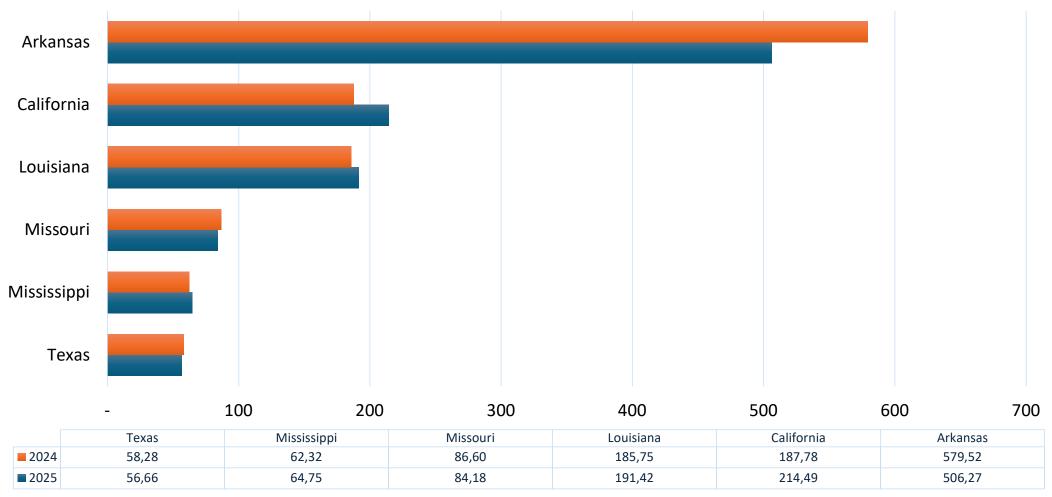
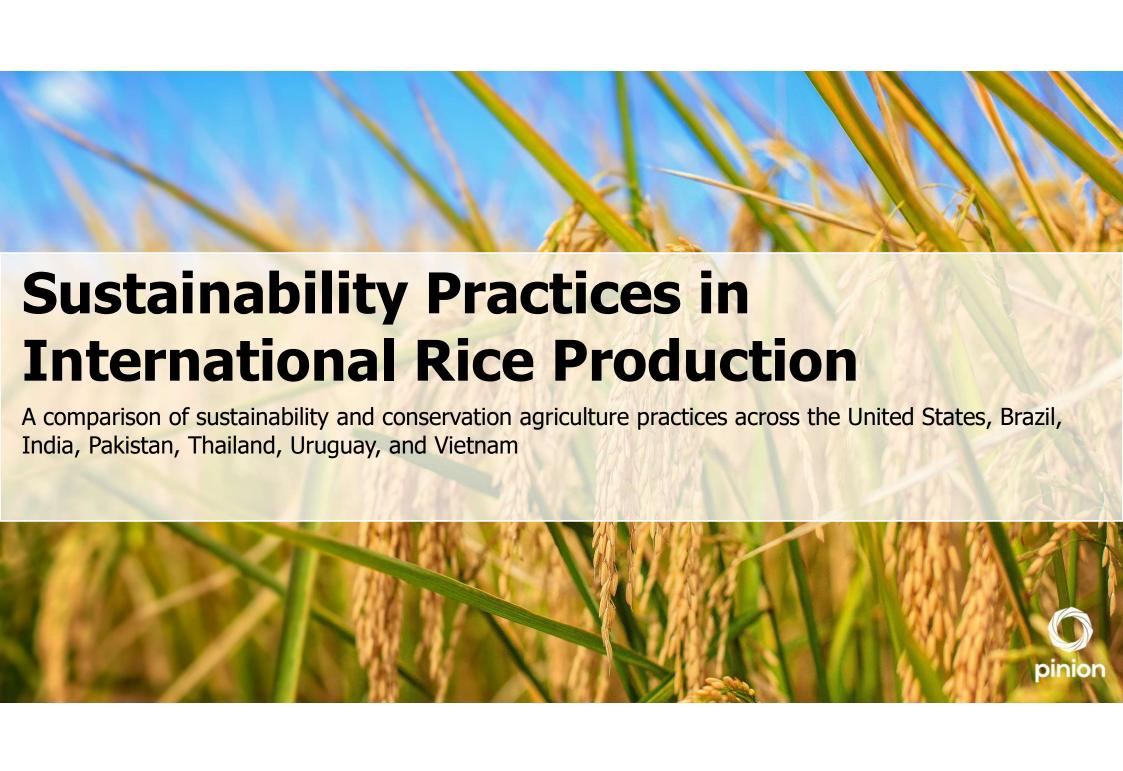


SNAPSHOT OF THE U.S. RICE INDUSTRY

- U.S. farmers grow all types of rice long, medium, short grain as well as aromatic and specialty varieties
- 1.2 million hectares planted on average annually
- About 70% of rice consumed in the U.S. is grown in the U.S.
- Rice is primarily grown in 7 states
 - Arkansas, California, Florida, Louisiana, Mississippi, Missouri and Texas

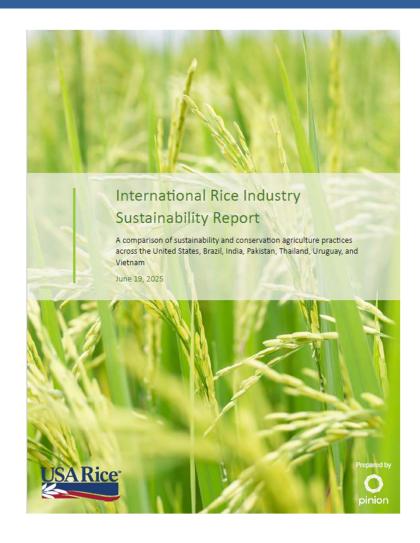


U.S. RICE PRODUCTION & AREA



HARVESTED AREA BY STATE

THOUSAND HECTARES


Source: NASS Quick Stats, September 2025

INTL SUSTAINABILITY REPORT

Highlight the differences in sustainability and conservation agriculture practices in seven top rice exporting countries:

- Brazil
- India
- Pakistan
- Thailand
- Uruguay
- USA
- Vietnam

REPORT METHODOLOGY

- 1. Conduct a literature review of global and regional rice sustainability and conservation agriculture practices
- 2. Collect expert opinions to determine current practice adoption and confirm the research accurately reflects the practices occurring in each region
- **3. Categorize practices into focus areas** based on the sustainability outcomes and the intention behind the practice to facilitate the analysis:

Land Use and Soil Conservation

Water Use and Quality

Energy Use and Air Quality

Biodiversity

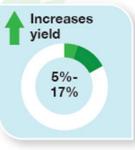
4. Compare focus areas across countries

SNAPSHOT OF RESULTS

	United States	Brazil		India					Vietnam	
		Northern	Southern	Indo- Gangetic Plain	Southern	Pakistan	Thailand	Uruguay	Double Crop	Triple Cro
Human labo r (h/Mg rice)	1	25	7	141	170	N/A	30	4	31	87
Yield (Mg/ha)	8.7	3.5	8.1	4.5	2.8 first 4.3 second	3.8	4.8 first 4.6 second	8.9	4.2 first 7.1 second	6.9 first 5.3 second 4.1 third
Yield (% of actual to potential)	69.3%	38.3%	54.7%	46.1%	41.1%	N/A	50.3%	61.4%	56.4%	57.2%
GHG emissions (Mg CO2e/ Mg rice)	0.6	0.3	0.8	0.8	1.2	N/A	0.9	0.5	0.9	0.7
Energy use (GJ/ha)	23.4	20.8	10.9	14.3	14.4	N/A	15.2	16.4	19.1	17.2
Nitrogen input (kg/Mg rice)	12.0	1.5	5.1	22.1	35.8	N/A	10.7	0.6	7.2	1.1
Pesticide use (applications / Mg rice)	0.8	0.9	0.9	0.9	1.4	N/A	1.1	0.4	1.6	1.3
Water use (mm/Mg rice)	147.3	303	173	233	364	N/A	263	146	191	148
Water Stress Analysis	Low Stress	Low stress	Low stress	Extremely high stress	Extremely high stress	High stress	Extremely high stress	Low stress	Low- medium stress	Low- medium stress

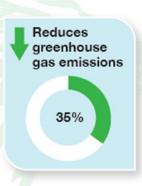
U.S. RICE + SUSTAINABILITY


Sustainable U.S. Rice Production Practices


Conservation tillage increases soil organic carbon, reduces methane emissions by 21%-

39%, reduces erosion, increases phosphorus and potassium levels in the soil, reduces

water use by 20%-30%, and increases yield by 5%-17% when compared to full till.

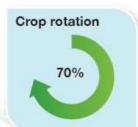


U.S. rice has the highest percentage of production in precision levelled fields (77%) which leads to higher flooding efficiency, a reduction in water use, and improves overall irrigation efficiency by 21%. In addition, methane production is reduced, yields are increased, seeding rates are lowered and expenses are reduced.

U.S. RICE + SUSTAINABILITY

Rice straw incorporation and retention, a practice that increases soil organic carbon, improves soil health, increases water use efficiency, increases yield for the next crop when compared to straw removal and reduces greenhouse gas emissions by 35%.

Rice produced in the U.S. has the highest ratio of actual yield to potential yield of countries researched.



Over 40% of U.S. rice production acres are reflooded

during the winter following harvest enhancing biodiversity and creating habitat for migratory waterfowl, other waterbirds, as well as amphibians, reptiles, and mammals.

Nearly 70% of U.S. rice production practices **crop rotation** which improves soil fertility, reduces pest pressure and pest control costs, and increases species biodiversity.

The U.S. has the highest percentage of **certified seed** use in rice production. This increases yield, net income, productivity and greatly decreases the potential for the introduction of weed seed into rice production fields.

LAND USE + SOIL CONSERVATION

Practice	U.S.	Brazil	India	Pakistan	Thailand	Uruguay	Vietnam
Biochar Application	1%	1%	No estimate provided	No estimate provided	0%	N/A	No estimate provided
Conservation Tillage (including Zero-Till)	41%	54%	3%	No estimate provided	N/A	90%	N/A
Cover Crop	2%	1%	N/A	N/A	N/A	N/A	N/A
Organic Fertilizer Application	8%	N/A	No estimate provided	No estimate provided	1%	N/A	No estimate provided
Rice Straw Incorporation & Retention	76%	42%	No estimate provided	No estimate provided	4%	100%	7%
Use of Certified Seeds	96%	No estimate provided	No estimate provided	No estimate provided	50%	95%	3%

Common adoption	Practice is implemented on over 50% of the rice area.
Moderate adoption	Practice is implemented on 16%-50% of the rice area.
Minimal adoption	Practice is implemented on 1%-15% of the rice area.
No adoption	Practice is not implemented on any rice acreage given available data but may still be appropriate for the region.
No estimate provided	Practice may be occurring, but estimates were not available from industry experts.

LAND USE + SOIL CONSERVATION

U.S. Practices

Conservation	Increases soil organic carbon					
tillage:	Reduces CH4 emissions					
	Reduces erosion					
	Increases P and K levels in the soil					
	Reduces water use					
	Increases yield					
Rice straw	Increases soil organic carbon					
incorporation	Reduces GHG emissions (compared to straw burning)					
or retention:	Reduces erosion					
	Improves soil health					
	Increases water use efficiency					
	Increases yield					
Certified seeds:	Increases yield, net income, and productivity					

Metrics

Percentage of actual yield to potential:

Highest percentage of actual yield to potential yield ratio

WATER USE + QUALITY

U.S. Practices

Direct Seeding:

Reduces water use

Reduces GHG emissions

Reduces input and labor costs

Increases yield

Dry seeding:

Reduces CH4 emissions

Reduces water use

GNSS or laser land leveling:

Improves water coverage

Increases yield

Metrics

Water Stress:

Rice is produced in a low water stress region

LASER LAND LEVELING

ALTERNATE WETTING & DRYING

ENERGY USE + AIR QUALITY

U.S. Practices:

4R, nitrogen efficiency, nutrient management plans:

Reduces GHG emissions

Improves nutrient use efficiency

Increases yield

Reduces input costs

Sulfate containing fertilizers:

Reduces GHG emissions

Urease inhibitors: **Reduces N2O emissions**

Reduces ammonia loss

Reduces nitrogen loss

Increases yield

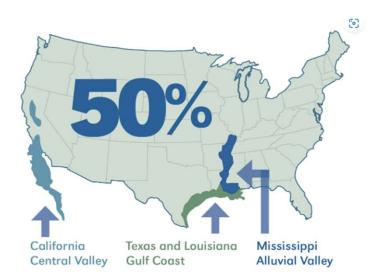
Metrics

GHG

Emissions:

Lower emissions compared to others in this report

(except Northern Brazil and Uruguay)


BIODIVERSITY

U.S. Practices:

Crop	Increases species diversity					
rotation:	Reduces pest pressure					
	Improves soil fertility					
	Reduces weed/pest control costs					
Rice-	Increases species diversity					
crawfish	Reduces pest and weed pressure					
rotation:	Improves soil fertility					
	Increases income but can decrease rice yield					
Winter	Creates habitat for migratory birds					
flooding:	Reduces winter weeds					
3	Improves water quality					
	Increases soil retention					

MIGRATORY BIRD HABITAT

Over half of North America's ducks and waterfowl winter in one of these regions — which overlap with virtually all of the rice lands in America.

RICE STEWARDSHIP PARTNERSHIP

RICE STEWARDSHIP **PARTNERSHIP**

ADVANCING MARKETS FOR PRODUCERS INIATIVE

U.S. Rice Industry 2030 Sustainability goals

Thank you!

usarice.com

