CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd, 2022. All rights reserved. This document contains information that is confidential and proprietary to Eurofins Scientific SE and / or its affiliates and is solely for the use of the personnel of Eurofins Scientific SE and all its affiliates. No part of it may be used, circulated, quoted, or reproduced for distribution outside companies belonging to the Eurofins network. If you are not the intended recipient of this document, you are hereby notified that the use, circulation, quoting, or reproducing of this document is strictly prohibited and may be unlawful. Photo images on this page are the copyrighted property of 123RF Limited.

Rice authenticity testing

DNA fingerprinting and genetic clustering analysis

Dr Werner Nader

Eurofins Dr. Specht Express Testing & Inspection GmbH Formerly Eurofins Global Control GmbH

October 6th. 2025

Price differences between rice varieties

Weekly Long Grain White Rice Swarna 5% Broken LRCDB00 364.00 Basmati Rice 1509 Parboiled Basmati 2% (FOB FCL) LRCGP00 750.00 1509 Steam Basmati 2% (FOB FCL) LRCGS00 829.00 1121 Steam Basmati 2% (FOB FCL) LRCHS00 1011.00

LRCNB00

Note: Weekly prices were assessed on 19-Sep.

Vietnam - Long Grain Rice

1121 Parboiled Milled Basmati

2% (FOB FCL)

0		
5% Broken	LRBAB00	414.00
25% Broken	LRBDE00	394.00
100% Broken	LRBEC00	326.00
Fragrant 5% Broken	LRBFA00	514.00
OM 5451 5% Broken	LRBAA00	489.00

Platts Thailand Rice Price Assessments, Sep 23 (

	Symbol	Price
Daily		
Long Grain Rice		
100% Grade B	LRAAC00	360.00
5% Broken	LRABB00	350.00
25% Broken	LRAEE00	335.00
A1 Super 100% Broken	LRAFC00	324.00
PB 100% STX	LRAGC00	362.00
Hom Mali 100% Grade B	LRAKA00	1110.00
Weekly		
Long Grain Parboiled Rice		
Parboiled Milled 5% STX	LRAIB00	360.00
Long Grain Fragrant Rice		
Hom Mali A1 Super 100% Broken (FOB FCL)	LRALA00	375.00
Pathumthani Fragrant 100% Grade B (FOB FCL)	LRAMC00	551.00

Source: Platts Rice Assessment, S&P Global

CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited.

902.00

Legal frameworks

REGULATION (EC) No 178/2002 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 28 January 2002

laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety

Article 8

Protection of consumers' interests

- 1. Food law shall aim at the protection of the interests of consumers and shall provide a basis for consumers to make informed choices in relation to the foods they consume. It shall aim at the prevention of:
- (a) fraudulent or deceptive practices;
- (b) the adulteration of food; and
- (c) any other practices which may mislead the consumer.

EU protection of COMMISSION DELEGATED REGULATION (EU) 2023/2835 geographical indication and designation of origin

Specific rules for imports of Basmati ric

- $1. \hspace{0.5cm}$ This Section shall apply to husked Basmati rice falling within CN codes 1006 varieties:
- (a) Basmati 217;
- (b) Basmati 370;
- (c) Basmati 386:
- (d) Kernel (Basmati);
- (e) Pusa Basmati;
- (f) Ranbir Basmati;
- (g) Super Basmati;
- (h) Taraori Basmati (HBC-19);
- (i) Type-3 (Dehradun).

CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited

Four arrested in Basmati rice fraud investigation

PRESS RELEASE

Date: 07 August 2025

Four arrested in basmati rice fraud investigation

An investigation by the Food Standards Agency National Food Crime Unit (NFCU) into basmati rice fraud has resulted in four arrests1. Large quantities of 10kg and 20kg bags of mixed rice in counterfeit premium brand basmati packaging were seized as part of the operation.

The UK has strict quality and authenticity requirements for basmati rice, set out in the 'Basmati Code of Practice', a set of legally enforced standards developed jointly by the Food Standards Agency and The Rice Association, the trade body representing the UK rice sector.

The Rice Association head of technical and regulatory affairs, Joe Brennan, said:

"It is good to see continued active official enforcement of the Basmati Code of Practice, which alongside regular industry surveys ensure that when UK consumers buy basmati rice they are getting an authentic product."

The code sets out the physical and aroma quality requirements of basmati rice and specifies the varieties that can be considered basmati, which is verified with DNA authenticity testing² by accredited laboratories. Basmati rice must be grown in India and Pakistan.

A condition of The Rice Association membership is to uphold industry standards, such as adherence to the Basmati Code of Practice. This requirement is taken seriously and consumer enquiries are investigated.

Food Control 180 (2026) 111604

Contents lists available at ScienceDirect

Food Control

journal homenage: www.elsevier.com/locate/for

DNA markers for Basmati authentication have the power to distinguish among other global economically relevant rice varieties and to evaluate their genetic background

Werner F. Nader "," (6), Katherine A. Steele 60), Lorena Krickl C, Rainer Schubbert C, Torsten Brendel

Eurofins Dr. Specks Europa Testing and Inspection GmbH. Am Neulander Geographerack 2, 21079, Hamburg, Germany School of Emironmental and Natural Sciences, Bangor University, Gwynedd, Bangor, LL57 2UW, UK

Eurofins Genomics Europe Applied Genomics GmbH, Anzinger Str. 7a, 85560, Ebersberg, Germany

Rice authenticity testing Basmati rice

DNA fingerprinting based on 10 SSR (Simple Sequence Repeat) markers was introduced in the early 2000s for authenticity testing of Basmati rice. Subsequently the addition of 5 SSRs and the fragrance gene for have refined the method for routine use. This study evaluated the applicability of the 15-SSR method for authenticity testing of more diverse types of commercially relevant rice that are traded on an international scale. DNA fingerprints of 158 rice varieties from 14 countries across four continents were obtained with this method. Most had distinct marker profiles except for eight pear isogenic lines and eight closely related traditional varieties. The fir marker detected several non-fragrant varieties that were incorrectly labelled as Jasmine fragrant rice, one of which was listed as fragrant and tariff-exempt in the EU Viet Nam Free Trade Agreement. To assess the authenticity of samples obtained from unofficial sources in the trade. UPGMA algorithm and Principal Coordinate Analysis (PCoA) were used for marker-based clustering of samples. Most of the unofficially sourced samples clustered according to their expected geographical and genetic origin, supporting their authenticity. The study supports the broader utility of this 15-SSR test, supplemented by the fgr marker, for global rice variety authentication.

DNA analysis is routine procedure in food analysis for the detection of certain species, varieties, pathogens and genetically modified organisms. Species can be differentiated by comparing the sequences of specified 'barcoding' genes (Primrose, 2019) but varieties of plants and breeds of animals can be distinguished by DNA fingerprinting using highly polymorphic mini-satellites (tandem repeats), microsatellites (simple sequence repeats; SSRs) and single nucleotide polymorphisms (SNPs) (Nader et al., 2016). Multi-allelic SSRs have higher discriminatory power compared to SNPs.

Rice (Orwa sativa I.) is a globally important staple food with extensive genetic diversity. Over 132,000 rice accessions and wild relatives are maintained in gene banks providing a vital source of traits for breeding, however, only a fraction of them are commercially relevant varieties (International Rice Research Institute, IRRI, 2025). Rice is cultivated on more than 163 million hectares in over 100 countries in

diverse cropping systems and environments (Laborte et al., 2017). Cultivated varieties are adapted to different climates, soils and resistance to pests. Diversity in grain morphology, starch structure and fragrance gives rise to different culinary uses, such as Basmati in Biryani and Pilaf. Jasmine in Curries, and Japonica in Sushi and Risotto.

Commercial rice varieties (except for F1 hybrids) are genetically homozygous and therefore ideally suited for DNA fingerprinting (Ramakishana et al., 1994), Almost 20,000 SSRs are listed in the Gramene database (Gramene, 2025; McCouch et al., 2002). Subsets of SSRs. have been used to assess genetic diversity and population structure in rice (Choudhary et al., 2013; Goldstein & Pollock, 1997; Jasim Aljumaili et al., 2018; Lestari et al., 2009; Ma et al., 2023; Nagaraju et al., 2002; Singh et al., 2013, 2016; Takezaki & Nei, 1996; Thomson et al., 2007; Verma et al., 2019). Other DNA-based methods have been developed for rice authenticity testing (Vieira et al. (2022) while Bradbury et al. (2005a and b) developed a PCR test for a major rice gene for fragrance

^{*} Corresponding author.

E-mail address: werner.nader@ftdach.eurofins.com (W.F. Nader)

https://doi.org/10.1016/j.foodcont.2025.111604

Received 3 September 2024; Received in revised form 8 July 2025; Accepted 26 July 2025 Available online 28 July 2025

^{0956-7135/© 2025} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Eurofins DNA fingerprinting to enforce the European Code of Practice for Basmati rice

NER NADER*, JENNIFER ELSNERZ, TORSTEN BRENDELZ, RAINER SCHUBBERTZ

*Corresponding author

Eurofins Global Control GmbH, Hamburg, Germany
Eurofins Genomics Europe Applied Genomics GmbH. Ebersberg, Germany

The DNA fingerprint in food forensics: the Basmati rice case

KEYWORDS: Microsatellites, SSRs (simple sequence repeats), food fraud, Code of Practice, fragrance gene fgr, Basmati NJPlot dendrogram, analytical technologies.

ABSTRACT

Due to its exceptional owner and cooling characteristics showed in risk on and its mode of the cooling characteristics in the EU and the Mode fail or ods a threating a premium pace, in the EU and the Mode fail or ods a threating a premium pace, in the EU and the state of the Cooling of the

INTRODUCTIO

Due to recent food scandals like melamine in dairy products and horse meat in beef products the topic food fraud is receiving increasing attention. Innovations in laboratory analysis provide tools to detect adulterations and particularly DNA analysis is gaining increasing importance. Two principal methods in DNA analysis for food control can be distinguished (1, 2): (a) DNA barcoding to identify species of plants, animals and microorganisms like horse meat in beef products and (b) DNA fi ngerorinting to differentiate animal breeds and plant varieties. like for the detection of chean long aroin rice mixed into high value Basmati (3), DNA fi ngerprinting is based on allele differences in hypervariable sequences. These are for example microsatellites (also called simple sequence repeats. SSRs, or short tandem repeats, STRs) and single nucleotide polymorphisms, SNPs, in fingerprinting of the second and third generation, respectively. It was first used for the identification of human individuals and has revolutionized forensics and the combat against crime. Basmati authenticity testing is a prominent example for its application in food forensics.

During the last decades Basmall become the forequite rice in the UK partly due to the large population originating from the Indian subconfinent (1). But adulterations with common long grain rice were frequently observed, which cost less than half the price of Basmall. Therefore the British Refoal Consorthum BRC, Rice Association and the British Refoal Consorthum BRC, Brice Association and the British Refoal Refoal States on Seament Rice and defined 15 fice varieties of Processes and the Refoal States and Refoal Refoal

Since 2005 26 new Basmati varieties were notified in India and Pakistan and many of these are now cultivated at large commercial scale. Consequently the CoP had to be revised in 2017 and now includes all 41 cultivars released as Basmat in the countries of origin (4). In forensics criminals can be only identifi ed based on the DNA traces left behind at the site of crime, if their DNA fingerprints are included in the police data base. Similarly rice varieties can be only identified, if their DNA fingerprint is known. Therefore also the DNA fingerprinting method originally defi ned by the UK Food Standards Agency reference materials of all new varieties from official sources to our laboratory to determine the fingerprints. This report reveals the results of this study, which allows Basmati authenticity testing under the new CoP and provides further information about the breeding history of Basmati varieties and their descent from traditional ancestors.

RESULTS AND DISCUSSION

The UK Code of Practice and Basmati authenticity definition in the EU

Table 1 lists the 41 Basmati varieties included in the CoP of 2017 with further information regarding their descent, where it was available in the public domain.

Six traditional and 35 evolved cultivars are currently notified as fastinal fill indicate and Patistran Indializational varieties were stell-cled and culti-facted by farmers over generations and reverse the control of the properties of the proper

Agro FOOD Industry Hi Tech - vol. 30(6) November/December 2019

....

The Basmati DNA Analysis Methodology

Please find hereunder the link to Basmati DNA Analysis Methodology

CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited.

Our recent publications on SSR DNA fingerprinting

ANALYTICAL TECHNOLOGIES

WERNER NADER¹⁺, JENNIFER ELSNER¹, TORSTEN BRENDEL¹, RAINER SCHUBBERT¹

"Corresponding author

1. Eurofins Global Control Gmbh, Hamburg, Germany

2. Eurofins Genomics Europe Applied Genomics Gmbhf, Ebersberg, Germany

Therefore the British Retail Consortium BRC, Rice Association

as authentic (4). Cultivation is aeographically limited to 7

defines in its article 6.1 DNA fingerprinting as the standard

States in Northern India and the Punjab in Pakistan. The CoP

method to differentiate authentic Basmati from non-Basmati

adulterants. Developed by Bligh (5) in 2000 the method has

inter-laboratory ring trials and proficiency tests. The CoP has

significantly improved the Basmati quality on the EU market.

in various consumer tests from 2006 to 2010 in Germany and

Since 2005 26 new Basmati varieties were notified in India

and Pakistan and many of these are now cultivated at large

commercial scale. Consequently the CoP had to be revised

in 2017 and now includes all 41 cultivars released as Basmati

in the countries of origin (4). In forensics criminals can be only

identified based on the DNA traces left behind at the site of

crime, if their DNA fingerprints are included in the police data

base. Similarly rice varieties can be only identified, if their DNA

fingerprint is known. Therefore also the DNA fingerprinting

method originally defined by the UK Food Standards Agency

(FSA) had to be adapted and the Rice Association provided

reference materials of all new varieties from official sources to

our laboratory to determine the fingerprints. This report reveals

the results of this study, which allows Basmati authenticity

about the breeding history of Basmati varieties and their

descent from traditional ancestors.

was available in the public domain.

RESULTS AND DISCUSSION

testing under the new CoP and provides further information

The UK Code of Practice and Basmati authenticity definition in

2017 with further information regarding their descent, where it

Six traditional and 35 evolved cultivars are currently notified

as Basmati in India and Pakistan, Traditional varieties were

selected and cultivated by farmers over generations and

rice research institutes selected pure lines from these seeds.

New varieties were evolved by crossing the traditional lines

with high vielding non-Basmati indica cultivars. In 2005 it was

a common understanding among Indian and Pakistani plant

breeders that authentic Basmati has to be either traditional or evolved from breeding with at least one traditional parent.

The 15 varieties in the first CoP followed this rule.

Table 1 lists the 41 Basmati varieties included in the CoP of

out of 36 products was not compliant with the CoP

France (6, 7, 8), in two recent German studies (9, 10) only one

proven its reliability and robustness in practice and in numerous

Whereas 13 out of 54 Basmati products were found adulterated

and the British Rice Millers Association issued in 2005 their Code of Practice on Basmati Rice and defined 15 rice varieties

The DNA fingerprint in food forensics: the Basmati rice case

KEYWORDS: Microsatellites, SSRs (simple sequence repeats), food fraud, Code of Practice, fragrance gene fgr, Basmati NJPlot dendrogram, analytical technologies.

ABSTRACT

Due to its exceptional aroma and cooking characteristics Basmati rice is one of the most popular rice specialities in the EU and the Middle East and is attracting a premium price. In the EU the strict authenticity definitions by the UK Code of Practice on Basmati Rice (CoP) of 2005 contributed significantly to improve the quality of this product and thereby its success on the market. Fifteen varieties were defined as authentic and a DNA fingerprinting method was determined for authenticity testing. Twenty-six new varieties had been released since then by India and Pakistan as Basmati and had to be included in the revised CoP of 2017. This study reports the analysis of the DNA fingerprints of these cultivars from reference materials from official sources to enable the application of the CoP Results not only allow the enforcement of the revised CoP, but provide further insights into the genetic relationships between the varieties and their descent from common ancestors. The Basmati cultivars of major economic importance can be grouped in four types due to their close relationship; Basmati 370, Kernel/Targori, Super Basmati and Pusa Basmati 1. The genotype fgr is supposedly the major cause of the Basmati aroma and is missing in 6 of the new varieties. Because it is not the only functional polymorphism associated with fragrance of rice the content of aroma in these new varieties should be studied and further requirements should be defined including the organoleptic characteristics of Basmati.

INTRODUCTION

Due to recent food scandals like malamine in dain; products and horse meat in beef products the topic food fraud is receiving increasing attention. Innovations in laboratory analysis provide tools to detect adulterations and particularly DNA analysis is gaining increasing importance. Two principal methods in DNA analysis for food control can be distinguished (1, 2); (a) DNA barcoding to identify species of plants, animals and microorganisms like horse meat in beef products and (b) DNA fingerprinting to differentiate animal breeds and plant varieties, like for the detection of cheap long grain rice mixed into high value Basmati (3). DNA fingerprinting is based on allele differences in hypervariable sequences. These are for example microsatelites (also called simple sequence repeats. SSRs, or short tandem repeats, STRs) and single nucleotide polymorphisms. SNPs, in fingerprinting of the second and third generation, respectively. It was first used for the identification of human individuals and has revolutionized forensics and the combat against crime. Basmati authenticity testing is a prominent example for its application in food forensics.

During the last decodes Basmati became the favourite rice in the UK parity due to the large population originating from the Indian subconfinent [1]. But adulterations with common long grain rice were frequently observed, which cost less than half the price of Basmati.

ANALYTICAL TECHNOLOGIES

WERNER NADER², OUK MAKARA², JEHNIFER ELSNER³, TORSTEN BRENDEL³, RAINER SCHUBBERT⁶

2. Cambodian Agricultural Research and Development Institute, Phron Penh, Cambodian Agricultural Research and Development Instit

The DNA fingerprint in food forensics part II: the Jasmine rice case

KEYWORDS: Thai Agricultural Standard, Cambodian Rice Standard, French Rice Code, Microsatellites, SSRs (simple sequence repeats): food fraud: fragrance gene far: NJPlot dendrogram.

ABSTRAC^{*}

Jasmine rice is the customary name for premium fragrant cultivars originating from the lowlands of the Central East of Thailand and the North-western part of Cambodia. In contrast to the term "Basmati rice", which is well defined in the pioneering UK Code of Practice (CoP) by a joint effort of all stakeholders in the UK, India and Pakistan, there is no common understanding about Jasmine rice authenticity. The French Rice Code includes the 3 varieties KDML105 RD15 and Pathum Thani 1 as Thai Jasmine rice and cultivars from Cambodia with similar characteristics as Jasmine rice. In contrast the Thai standard defines 8 varieties and the Cambodian standard five cultivars as Jasmine rice. The success of the UK CoP is due to it clarity and restriction to certain cultivars, geographical regions and specific characteristics affecting the cooking and appearance of the rice. DNA fingerprinting is defined as the standard method for authenticity testing. This report reveals that the genetic fingerprinting method based on 15 microsatellite or SSR (Simple Sequence Repeat) markers, which was recently developed for the differentiation of the 41 Basmati varieties in the revised UK CoP. can be also applied to Jasmine rice. Based on authentic reference materials obtained from the Cambodian Agricultural Research and Development Institute (CARDI) and from the trade the test not only allows the application of the French Rice Code, but also of the Cambodian Milled Rice Standard. This might lead to more transparency for the trade and consumers, increase the quality of this premium rice and contribute to its success on the world markets.

INTRODUCTION

DNA fingerprinting was invented by Sir Aleo Jeffreys and first applied as a forensic tool in an immigration dispute (1). Since then it became the gold standard in paternity testing and human forensics to identify individuals during criminal investigations. Also in food forensics it is a standard tool for the differentiation of plant varieties and animal breeds (2.3) 4). Authenticity testing of Basmati rice is the first example of its routine application for food control (4, 5, 6). Basmati is a premium fragrant rice with defined geographic origins and typical cooking characteristics. Due its higher price adulterations with cheaper common long grain rice have been frequently oloserved. As a consequence the UK Rice Association, British Rice Millers Association and British Retail Consortium developed the UK Code of Practice (CoP. 7), which defines Basmati authenticity and determines DNA fingerprinting as the standard method for the application of the Code.

Jasmine rice is an aromatic rice speciality from Southeast Asia with superb cooking characteristics. Its fragrance is similar to Basmati rice or pandan grass with 2-acetyl-1pymoline as the major aroma compound. Recently is has been observed that Jammine rice is increasingly adulterated with chapper fixe of lower quality. Accordingly laboratory testing methods are needed to protect the consumer against misleading product claims. Furthermore the SU Ventrome Riese Trade Agreement (EVFA) of 2019 provides for the import of about 30,000 method fixed for the import of about 30,000 method fixed for the import of cutoffles of the specific forgard Ventromerse rice varieties at zero duty and the authenticity of these outlines has to be verified by the outlines as for some outlines has to be verified by the outlines as for some outlines and the southern accordance.

Rice exports are of great commercial importance for the countries of Soluthers Also with a total value of \$5.0 billion USD in 2018 (8), A large fraction of this is fragrant rice, which accounts of 2018 (9), A large fraction of this is fragrant rice, which accounts of 17.4 % of all rice exports from Trainland in 2018 (10) and 22 for the wide and 17.0 billion 17.0 bill

For testing the authenticity of Sarmati rice a DTM. Integreptining method had been developed by Bigh [11], which become the standard test in the UK Code of Practice on Sarmati rise (Cof. 7). This test is based on a second generation fragerprinting procedure with SSR markers and ollow the bisenfittodine and quantification and quantification and quantification of all civil considerations of markers. In this consideration of the standard procedure with SSR markers and ollow the bisenfit reference malerials (2). Recently a method based on 15 SSR markers and the fragrance general grower within the standard procedure of the standard procedure of the standard procedure of the standard (2). This report reveals that this method is also subtable for the undherality testing of Jarminer fice and might lead to more consumer transparency and improve the quality of this Southeast Asian speciality.

RESULTS AND DISCUSSION

Authenticity definition of Jasmine rice by Southeast Asian and

Similar to Basmarti rice the outherstolly and quality of Jasmine fine is defined by underlise and their physical, cooking and biochemical characteristics. According the That is pecification or Jasmine rice (13), 41 the mitted senter has to be long, sim (overage langth of whole termits > 7 mm, langth violat natios > the cooking of the

Food Control 180 (2026) 111604

Contents lists available at ScienceDirect

Food Control

journal homepage: www.elsevier.com/locate/foodcont

DNA markers for Basmati authentication have the power to distinguish among other global economically relevant rice varieties and to evaluate their genetic background

Werner F. Nader a, o, Katherine A. Steele o, Lorena Krickl , Rainer Schubbert ,
Torsten Brendel o

- * Foresies Dr. Starche Fenness Testina and Inspection GuibH. Am Naulaunder Generhanark 2, 21079. Hambura: Germany
- School of Environmental and Natural Sciences, Bangor University, Guymedd, Bangor, LL57 2UW, UK
 Eurofins Genomics Europe Applied Genomics CrabH, Anainger Str. 7a, 85560, Ehersberg, Germany

ARTICLE INFO

Rice authenticity testing Basensti rice Sushi Risotto Jasmine rice UPCMA cluster analysis

Jasmine rice UPGMA cluster analysis Primary coordinate analysis Fragrance gone for

BSTRACT

DNA Regretating based on 10 SSR (Single Sequence Repeat) markers was introduced in the early 2000 for untherticity testing of ansatut fees. Subsequently the addition of SSRs and the Regionage steps figh new refined the method for routine use. This study evaluated the applicability of the 15-SSR method for authenticity setting of mone drivers type of commercially relevant rect that are tracked on an international cale. DNA Regretation of mone drivers type of commercially relevant rect that are tracked on an international cale. DNA Regretation of marker profiles except for eight near isogenic lines and eight closely related traditional varieties. The fig marker detected several non-fragents varieties that were incorrectly inhelded as Jasmine fragant rice, one of which was litted as fragants and surff-exempt in the EU Viet Num Free Track Agreement. To assess the entheristicity of sumples obtained from undeficial sources in the track. UVAM algorithm and Frincipal Coordinate Audientic (TCA) were used for marker-based chartering of samples. Most of the undeficially sourced samples character of the breader utility of this 15-SSR 18x, applemented by the figurators, for global care variety authentication.

1. Introduction

DNA analysis is routine procedure in food analysis for the detection of certain species, varieties, pathogens and genetically modified organisms. Species can be differentiated by comparing the sequences of specified barcoding genes (Primrose, 2010) but varieties of plants and breeds of animals can be distinguished by DNA fingerprinting using highly polymorphic mini-satellites (tandem repeats), microsstellites (stimple sequence repeats, SRNs and single nucleotide polymorphisms (SNPs) (Nader et al., 2016). Multi-allelic SRs have higher discriminatory power compared to SNPs.

Rice (Oryan sariwe L.) is a globally important staple food with extensive genetic diversity. Over 122,000 rice accessions and will evaluative are maintained in gene banks providing a vital source of traits for breeding, however, only a fraction of them are commercially release varieties (International Rice Research Institute, IRBI, 2025), Rice is cultivated on more than 163 million bectares in over 100 countries in

Received 3 September 2024; Received in revised form 8 July 2025; Accepted 26 July 2025

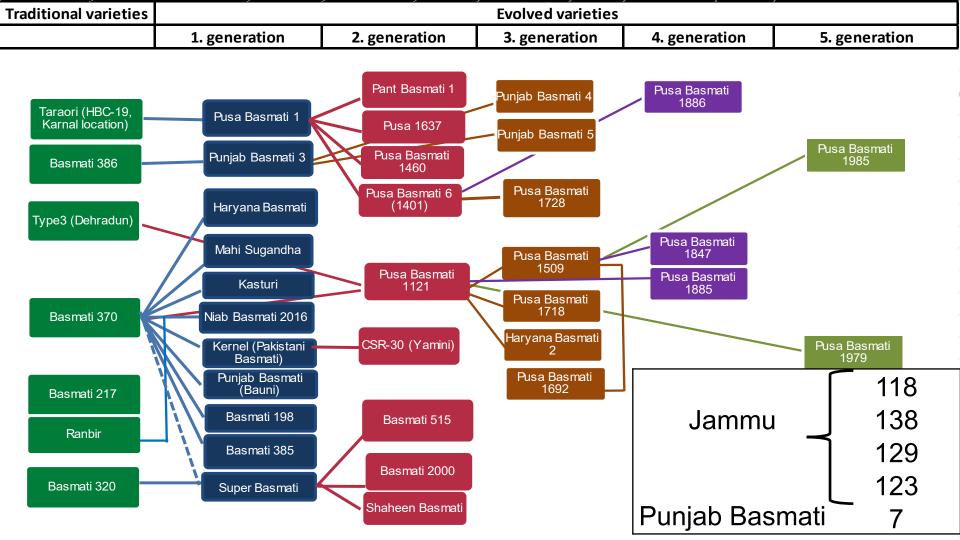
diverse cropping systems and environments (Laborte et al., 2017). Cultivated varieties are adapted to different climates, soils and resistance to pests. Diversity in grain morphology, starch structure and fragrance gives rise to different culinary uses, such as Basmatt in Biryani and Pilaf. Jasmine in Curries, and Jasonica in Sushi and Risonica in Curried Pilaf.

Commercial rice varieties (except for F, hybrids) are genetically homozogous and therefore ideally suited for DNA fingerprinting homozogous and therefore ideally suited for DNA fingerprinting (finansishama et al., 1994). Almost 20,000 SRs are listed in the Gramen and the Gramen and Comment and Comment and Comment and DNA fingerprinting to the Grame and Comment and DNA fingerprinting the commentation of the Gramen and DNA financial Commentation and DNA financial Commentation and Commentation and

https://doi.org/10.1016/j.foodcont.2025.111604

Available online 28 July 2025

0956-7135/© 2025 The Authors, Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


Agro FOOD Industry Hi Tech - vol. 30(6) November/December 2019

57

Agro FOOD Industry Hi Tech - vol. 31(1) January/Febbruary 2020

^{*} Corresponding author.

E-mail address: werner.nader@ftdach.eurofins.com (W.F. Nader).

Basmati in the Code of Practice and DNA fingerprints

No	Variety and origin	RM1	RM 223	M16	RM 202	RM 44	RM 201	RM 229	RM 241	RM171	RM 55	RM 263	RM152	RM 212	RM 252	RM72	fgr
1	Basmati 217																
2	Basmati 370*	W	W	Z	Υ	X	×	Υ	Z	Υ	Z	159	144	116	233	170	D
3	Type 3 (Dehradun)*	W	W	Z	Υ	X	X	Υ	Z	Υ	Z	163		116	235		D
4	Ranbir Basmati*	W	W	Z	Υ	X	X	Υ	Z+4	Υ	Z	159	144	116	221	170	D
5	Taraori Basmati*	W	W	Z	Υ	Υ	X	Υ	Υ	Υ	×	163	144	116	239	170	D
6	Basmati 386*	W	W	Z	Υ	Υ	×	Υ	Υ	Υ	×	163	144	116	239	170	D
7	Kernal (Pakistan Basmati)*	W	W	Z	Υ	Υ	×	Υ	Υ	Υ	X	163	-	-	-	-	-
8	Pusa Basmati 1*	W	W	Υ	Υ	Y	×	×	Υ	Z	Υ	163	148	116	255	155	D
9	Super Basmati*	W	W	Z	Υ	X	X	Υ	Z	Z	×	-	144	116	239	-	D
10	Basmati PK-385*	Υ	W	Z	×	Y	×	Υ	Z	Y	Z	163		134			D
11	Basmati PK-198*	Υ	W	Z	X	×	×	Υ	Z	Υ	z	159		134			D
12	Mahi Sugandha*	Y	×	Z	X	W	Z	×	Z	Z	Y	-	-	-	-	-	D
13	Kasturi*	W	V	Υ	Υ	W	×	Y+2	z	z	Y	202	144	114	233	146	D
14	Haryana Basmati*	Z+2	W	Υ	X	W	×	×	Υ	Z	Y	159	144	134	215	155	D
15a	Punjab Basmati (Bauni)* ^j	Z+5	Υ	Z	X	X	×	Υ	Z	Υ	Z	-	-	-	-	-	-
15b	Punjab Basmati (Bauni)* ^j	Y+2	Υ	z	×	×	×	Υ	X-4	Υ	Z+3	159	-	134	-	-	-
16	Basmati 2000*	W	W	Z	Υ	Х	X	Υ	Z	Z	×	163	155	134	233	170	D
17	Basmati 515*	w	W	z	Υ	×	×	Υ	z	z	×	163	144	134	233	170	D
18	Shaheen Basmati*	W	W	z	Υ	Υ	X	Υ	Z	z	×	163	144	134	233	170	D
19	Kissan Basmati*	w	V	Υ	Υ	w	×	Y+2	Υ	z	Υ	163	134	116	215	170	D
20	NIAB Basmati 2016*	w	W	z	Υ	X	×	Υ	z	z	z	163	144	116	233	170	D
21	Noor Basmati*	Y+2	W	Υ	Υ	w	w	Y+2	Υ	z	Υ	180	154	134	215	155	D
22	Basmati CSR-30*	W	W	z	Υ	Υ	X	Υ	Υ	Υ	X	163	144	116	239	170	D
23	Pusa Basmati 1401*	w	W	Υ	Υ	Υ	×	×	Υ	z	Υ	163	148	116	255	170	D
24	Pusa Basmati 1460*	W	W	Y	Y	Y	X	×	Y	z	Y	163	154	116	253	155	D
25	Pusa Basmati 1609*	z	V	Y	X+2	w	×	×	Y	z	Y	163	154	114	215	155	D
26	Pusa Basmati 1637*	w	W	Y	Y	Y	X	X	Y	z	Y	163	148	116	255	155	D
27	Pusa Basmati 1728*	w	w	Y	Y	Y	×	×	Y	z	Y	163	148	116	255	170	D
28	Pusa Basmati 1121*	w	W	Y	Y	Y	×	×	Y	Y	×	163	148	116	255	170	D
29	Pusa Basmati 1509*	W	W	Y	Y	Y	×	Y+2	Y	z	×	163	154	114	259	170	D
30	Puniab Basmati 2*	W	w	Z	Y	×	×	Υ Υ	Y	Z	×	165	144	116	237	170	D
	Puniab Basmati 3*	W	W	Z	Y	Ŷ	×	Y	Y	Y	×	163	144	116	239	170	D
31	,			Z	Y	Y		Y	Y	Y	z						
32	Vallabh Basmati 22*	W	W	Z	Y	Y	×	Y	Y	Y	Z	163 163	144	116	255 255	155 155	D D
33 34	Vallabh Basmati 23* Basmati 564*	W/Y	W	Y/Z	Y X/Y/	W-2 / Y	X X/Z	X/Y	Y Y/Z	Y	X/Z	161 /	144 144/148	116 116 /	255	155 /	D
34	Dasiliai 304	VV / 1	• • •	1,2	Y+4	VV-2 / 1	7/2	Α/ Ι	1/2	'	7/2	163	/ 154	134	/255	161 /	5
35	Pant Basmati 2*	z	W	z	×	w	z	X+2	Υ	w	Y	202	148	134	233	155	D
36	Pusa Basmati 1692*	W	W	Υ	Υ	Υ	Х	Y+2	Υ	Z	Х	163	155	114	215	170	D
37	Pusa Basmati 1718*	W	W	Υ	Υ	Υ	×	X+2	Υ	Υ	×	163	155	116	255	170	D
38	Punjab Basmati 4*	W	W	z	Υ	Υ	×	Υ	Υ	Υ	×	163	148	116	255	170	D
39	Punjab Basmati 5*	w	W	z	Υ	Υ	×	Υ	Υ	Υ	×	163	144	116	239	170	D
40	Haryana Basmati 2*	W	W	Υ	Υ	Υ	×	×	Υ	Υ	×	163	148	133/116	255	170	D

No fragrance gene fgr

New varieties notified at origin								
	1	847	Jammu	118				
	1	885		138				
Pusa	1	886		129				
	1	985		123				
	1	979	Punjab B,	7				
Basmati	Reamati C		PK	1121				
Dasillati	2	020	FK	2021				
	Super	Gold	KSK	111 H				
Basmati	Basmati							
		Vital						
NIAB	H	Y 18						
INIAD	H	T 39						

Our testcodes: BJ027 and BJB0F

Source: Nader, W.F.; Elsner, J.; Brendel, T.; and Schubbert, R.: The DNA fingerprint in

How to identify newly developed varieties without reference materials?

Indian Council of Agricultural Research

Indian Council of Agricultural Research

Rice

Pusa Basmati 1885

(Variety)

Rice

Pusa Basmati 1886

(Variety)

Genes introgressed

- Xa21, xa13, Pi2 and Pi54
- Molecular markers used
- Recurrent parent

Donor parent

Pusa 1883/Pusa Basmati 1718

- Salient features
 - Bacterial blight and blast resistant
 - Average grain yield: 47.0 q/ha
 - Maturity: 145 days
 - Plant height: 135 cm

►AP5659-5 Pusa Basmati 1121

Pi54MAS⁴

_pTA248*

xa13prom

Traits improved: Bacterial blight & blast resistance

Xa21, xa13, Pi2 and Pi54

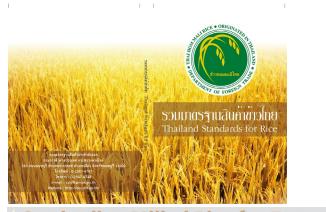
- Genes introgressed Molecular markers used
- SSR
- Recurrent parent
 - Pusa Basmati 6
- Donor parent


Pusa 1602 (Pi2 and Pi54)/ Pusa 1603 (xa13 and Xa21)

- 5. Salient features
 - Bacterial blight and blast resistant
 - Average grain yield: 45 q/ha
 - Maturity: 145 days
 - · Plant height: 95 cm

CONFIDENTIAL AND PROPRIETARY - @ Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited.

Principle Coordinate clustering analysis of Basmati



- 1: Basmati 370 family
- 2: Super basmati family
- 3: Taraori/Kernel family
- 4: Pusa Basmati 1 family
- 5: Pusa Basmati 1121 family
- 6: Pusa Basmati 1509 family
- 10: adulteration cluster

Standards defining Jasmine rice

Cambodian Milled Rice for Exports Cambodia offers Indica type of rice as ... Premium Fragrant or Cambodian Jasmine Rice | Fragrant | Long grain White or Premium White | White | Brown/Cargo White White White (IR) **Jasmine Rice** Fragrant **Premium White Premium Fragrant** Fragrant White Dry Season Dry Season Wet Season Wet Season Wet season Phka Malis Sen Kra Ob Ginger Rice Pearl Rice Neang Khon Phka Rumduol Sen Pidao Phka Knhev Phka Chan Sen Sar Rengchey Ponla Pdao

POINT 6 – DÉNOMINATION DES AUTRES RIZ PARFUMÉS

6.2. Origine Thaïlande

Les caractéristiques minimales des variétés de riz Thaï parfumé : dimension des grains, teneur en amylose et arôme, satisfont aux spécifications du tableau 2.

Tableau 2 - Caractéristiques minimales des variétés de riz Thaï (non cuit)							
Hom Mali Pathumtani							
7 mm	7 mm						
13-18%	16 – 20 %						
Supérieure à 3,2	Supérieure à 3,2						
présent	présent						
	Hom Mali 7 mm 13 – 18 % Supérieure à 3,2						

Pour les dénominations « Riz Parfumé de Thailande » ou « Riz Parfumé Thai » ou « Riz Fragrant de Thailande », « Riz Fragrant Thai » ou « Riz Jasmine Thai », le riz doit être constitué de 80 % minimum de la variété Pathumtani ou de 92 % minimum de la variété Hom Mali.

Les dénominations « Riz Parfumé de Thailande » ou « Riz Parfumé Thai » ou « Riz Fragrant de Thailande », « Riz Fragrant Thai » ou « Riz Jasmine Thai » peuvent être complétées par la mention Hom Mali s'ils sont constitués à 92 % minimum de Riz de Thailande Hom Mali (variétés Kao Dok Mali 105 et RD 15 (aussi appelée Kor Khor 15)).

L'identification des variétés est mesurée par des tests ADN.

La liste des variétés de riz parfumés d'origine Thaïlande est mentionnée dans l'annexe 6.

6.3. Autres origines que Thaïlande

Riz Parfumés, riz Fragrant autres que Thailande: Dans ce cas, l'information doit obligatoirement être complétée par l'indication du ou des pays d'origine dans l'étiquetage.

L'indication de l'origine peut, <u>au choix</u>, compléter la dénomination (elle est dans ce cas mentionnée à proximité immédiate de la dénomination) ou figurer ailleurs sur l'emballage, conformément à la règlementation en vigueur en matière d'étiquetage.

La dénomination « riz Jasmine » peut également être employée pour des riz en provenance du Cambodge et du Vietnam.

CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited.

DNA fingerprints of Southeast Asian rice varieties

		Variety and origin	RM1	RM 223	M16	RM 202	RM 44	RM201	RM229	RM241	RM171	RM55	RM 263	RM152	RM212	RM252	RM72	fgr
		-					Thai	iland										
Jasmine	67	Hom Mali ^b	Z+5	V	Υ	Υ	W+2	W	Х	Y-2	Z	Z+2	190	143	114	233	146	D
Jasiiiile	68	Pathum Thani 1 ^b	Z+5	V	Υ	Y+4	W	W	Х	Υ	Z+4	Υ	185	143	112	247	155	D
	69	RD79	W	Υ	Υ	Υ	W	Z	Χ	Υ	Z	Υ	202	155	134	215	155	ND
							Caml	odia										
	70	Phka Romeat*c	Z+5	V	Υ	Υ	W+2	W	Х	Y-2	Z	Z+2	190	143	114	233	146	D
Jasmine	71	Phka Rumdeng* ^c	Z+5	V	Υ	Υ	W+2	W	Х	Y-2	Z	Z+2	190	148	114	233	146	D
В	72	Phka Rumduol*c	Z+5	V	Υ	Υ	W+2	W	Х	Y-2	Z	Z+2	180	143	114	233	146	D
Ja	73	Sen Kra Oub*c	W+6	V-8	Υ	Х	W+2	W	Y+2	Υ	Z	Υ	202	154	133	193	146	D
	74	Sen Pidao* ^c	Z	V	Υ	Υ	W	Z	Y+2	Υ	Z+4	Υ	185	154	113	193	155	D
	75a	SRO Ngear	Z	V	Υ	Υ	W	W	Y+2	Y-8	W	Υ	183	144	134	215	155	D
	75b	SRO Ngear	Z	V	Υ	Υ	W	W	Y+2	Y-8	W	Υ	181	155	134	215	155	ND
	76	Phka Knhey (Ginger rice)*C	Z	Υ	Υ	Y+4	X+2	W	Х	Υ	Z+4	Υ	183	140	112	215	146 /	D
	77	Phka Chan Sen Sar*c	Z	V-8	Υ	X+4	Y+4	Z	Y+2	Y-6	Z	Υ	188	132	114	229	152	ND
	78	CAR4* ^c	Z+2	V-8	Υ	Х	W	W-2	Y+2	Y-2	W	Υ	188	148	113	250	146	ND
	79	CAR6*°	Z+2 Z	V-8 Y	Y Y	Х	W	W-2	Y+2	Y-2	W	Υ	188	148	113	254	152	ND
	80	Chul's Sa*c	_	Y V-8	-	Y	W	Z	Y+2	Y	Z+4	Y	202	154	133	215	155	ND
	81	Damnoeb Sbai Mongkul* ^c IR66* ^c	Z		Y	X+4	W	W	X	Y-2	Z	Y	190	154	131	225	152	ND
	82		Z	Y	Y	Y+4	W	W	Y+2	Y-4	W	Z	190	154	133	248	161	ND
	83	Riang Chey* ^c	Z+2	V-8	Υ	Х	W	W-2	Y+2	Y-2	W	Υ	188	148	113	256	152	ND
-	Г	d						nam										
ø	84	Jasmine 85 ^d	Υ	V	Υ	Υ	W+2	W	Х	Υ	Z	Υ	190	-	-	-	-	D
ţ	85	NÀNG HOA 9 ^d	Y Z+5	V V	Y Y	Y	W+2	W	X X	Y	Z Z+4	Y Y	190	148	112	215 245 / 239	146	D D
ran	86	ST 20 ^d	Z+5	٧	Y	Y+4	W	W	X	Υ	Z+4	Y	183	144	112	/233	155	D
rag	87	St 24	Z+5	V	Υ	Y+4	w	W	Х	Y-8	Z+4	Υ	183	155	112	218	155	D
e E	88	ST 25	Z+5	V	Y	Y+4	W	W	Х	Y-8 / Y	Z+4	Y	185	155	112	218/242	155	D
Vietnamese fragrant rice	89	OM 18	Y-2	V	Y	Y+4	W+2	W	Х	Y	w	Y	180	155	116	215	146	D
	90	OM4900 ^d	Y-2	V	Y	Y	Y+4	W	X	Y	z	X	202	155	112	215	155	D
	91	VD 20 ^d	z	V	Y	Y+4	W+2	W	X	Y	Z	Y	183	144	134	215	146	D
	92	LT 28	Y-2	V-8	Y	Υ	W	Y+4	Х	Y	Y	Y	202	155	134	215	161	D
	93	OM 5451 ^d	Z	Y	Y	Y+4	X+2	W	Х	Y	Z+4	Υ	183	140	112	215	_	ND
								nmar										
	94	Paw San	W+10	W-2	Υ	Y+2	Y-2	W	Y+2	Υ	X-3	Z	161	144	115	240	170	ND
CONFIDEN		ND PROPRIETARY - © Eurofin:																

Variety	Catagory	Fragrance	Origin		
Hom Mali (KDM105					
and RD15)	Thai Jasmine	yes	Thailand		
Pathum Thani 1	Thai Jasmine	yes	Thailand		
RD79	long grain	no	Thailand		
Phka Romeat	Camb. Jasmine	yes	Cambodia		
Phka Rumdeng	Camb. Jasmine	yes	Cambodia		
Phka Rumduol	Camb. Jasmine	yes	Cambodia		
Sen Kra Oub	Camb. Aromatic rice	yes	Cambodia		
Sen Pidao	Camb. Aromatic rice	yes	Cambodia		
SRO Ngear fragrant					
variety	Camb. Aromatic rice	yes	Cambodia		
SRO Ngear non-					
fragrant variety	medium to long grain	no	Cambodia		
Phka Knhey (Ginger					
rice)	medium to long grain	no	Cambodia		
Phka Chan Sen Sar	medium to long grain	no	Cambodia		
CAR4	medium to long grain	no	Cambodia		
CAR6	medium to long grain	no	Cambodia		
Chul's Sa	medium to long grain	no	Cambodia		
Damnoeb Sbai					
Mongkul	medium to long grain	no	Cambodia		
IR66	medium to long grain	no	Cambodia		
Riang Chey	medium to long grain	no	Cambodia		
Jasmine 85	Vietnamese fragrant	yes	Vietnam		
NÀNG HOA 9	Vietnamese fragrant	yes	Vietnam		
ST 20	Vietnamese fragrant	yes	Vietnam		
St 24	Vietnamese fragrant	yes	Vietnam		
ST 25	Vietnamese fragrant	yes	Vietnam		
OM 18	Vietnamese fragrant	yes	Vietnam		
OM4900	Vietnamese fragrant	yes	Vietnam		
VD 20	Vietnamese fragrant	yes	Vietnam		
LT 28	Vietnamese fragrant	yes	Vietnam		
OM 5451	Vietnamese long grain	no	Vietnam		

Adulteration of Jasmine rice with non-fragrant RD79

Standards of Thai Fragrant Rice

Appended to Notification of Ministry of Commerce Subject: Standards of Thai Fragrant Rice B.E. 2559

Clause 1 Definitions

(1) Thai Fragrant Rice (Thai Jasmine Rice, Thai Aromatic Rice or any other names of the same meaning) means Cargo rice and White rice that are processed from the non-glutinous rice paddy of fragrant varieties that are produced in Thailand and certified by Ministry of Agriculture and Co-operative as non-glutinous rice of fragrant varieties. They have natural aroma depending on whether they are new or old crop. The cooked rice of which has tender texture.

The glass squeezing test – ONLY! a simple preliminary test method, for indication, only

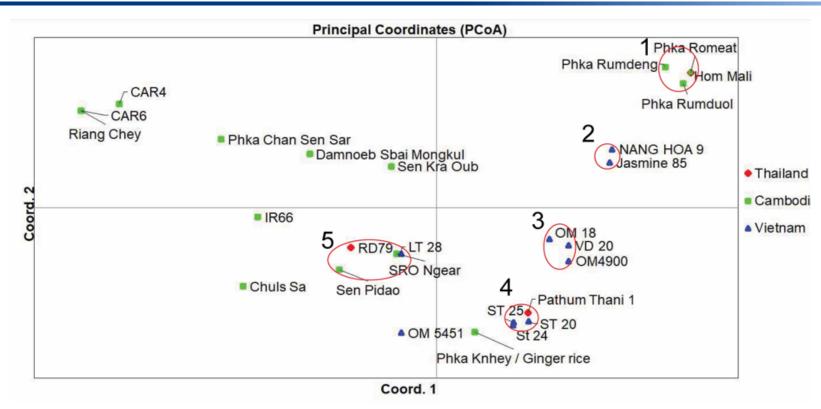
APPENDIX D

Method for checking cooked rice kernels boiled in water (A simple preliminary test method for indication only)

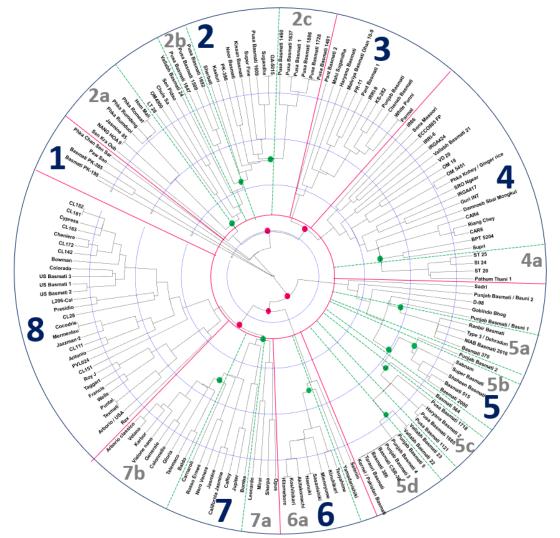
Apparatus

- 1.1 Electric pot
- 1.2 Stainless metal basket
- 1.3 Spoon or paddle for stirring rice kernels
- 1.4 Two glass sheets for pressing rice kernels

2. Test method


- 2.1 Select 100 white rice kernels randomly and put them in the basket.
- 2.2 Boil distilled water in the electric pot.
- 2.3 Dip the basket with the rice kernels in the boiling water (as in 2.2) for a period as calibrated against the alkali spreading value method, during which ensure that the rice kernels do not stick with each
- 2.4 On completion of the boiling period, lift up the basket from the boiling water and immediately dip it into the cold water, then lift up for draining.
- 2.5 Spread the rice kernels on the glass sheet. Place another glass sheet over the rice kernels and press them flat. The kernels that have white cores of raw starch inside are considered as not fully gelatinized.

3. Judgement


The kernels that are not fully gelatinized are not considered Thai Hom Mali rice.

PCoA clustering analysis of Jasmine rice

CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited

UPGMA Clustering of 160 rice varieties worldwide

2, 3, 5 Basmati

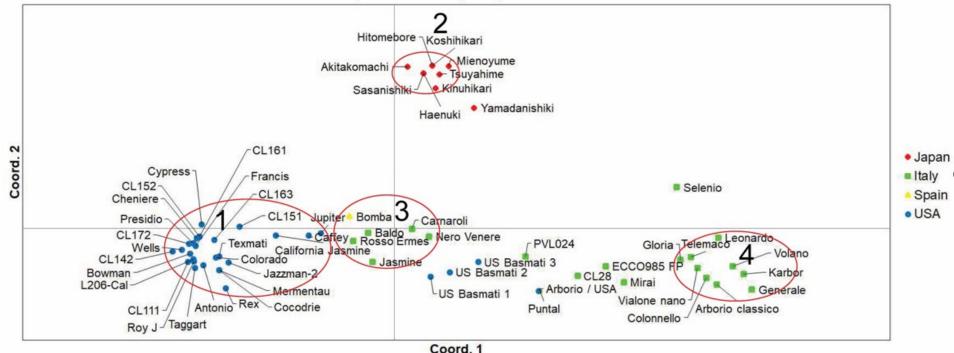
2, 4 Jasmine

6 Japanese varieties

7 Italian varieties

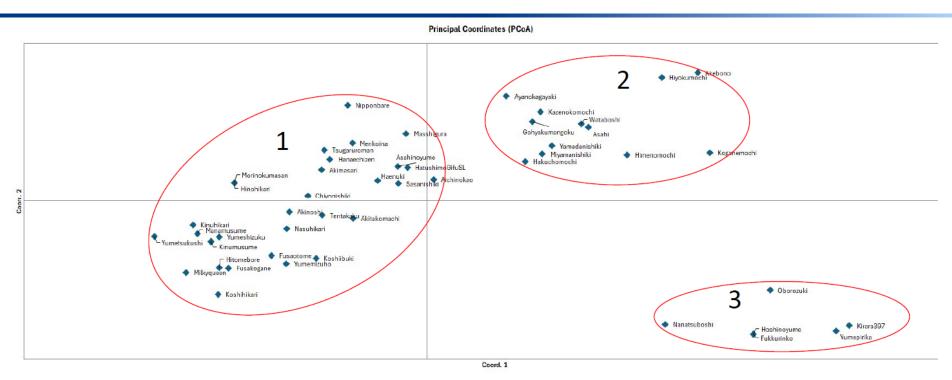
8 US varieties

UPGMA algorithm: Unweighted Pair Group Method with Arithmetic mean


Source: Nader, W.F.; Steele, K.; Krickl, L..; Brendel, T.; and Schubbert, R.: Authenticity testing of commercially relevant rice varieties on an international scale by DNA fingerprinting and UPGMA and PCoA clustering analysis. Submitted for publication to Food Control

strictly prohibited

PCoA clustering analysis of Risotto and Sushi rice



CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited

PCoA clustering analysis of Japanese varieties

Analysis with a set of 24 SSR markers, two on each of the 12 rice chromosomes

CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited.

Your Contacts

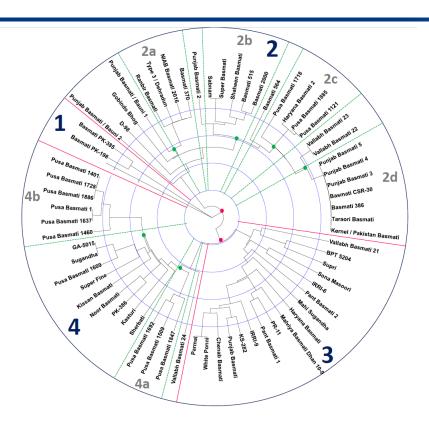
Eurofins Dr. Specht Express Testing & Inspection

Dr. Werner NaderConsultant
Retired Managing Director

E-Mail: Werner.Nader@ ftdach.eurofins.com

Amar Guberinic, MA Sales Manager

E-Mail: Amar.Guberinic@ ftdach.eurofins.com



Dr. Alexander Zahm *Managing Director*

E-Mail: <u>Alexander.Zahm@ftdach.eurofins.com</u>

UPGMA clustering of Basmati rice

2a: Basmati 370 family

2b: Super basmati family

2c: Pusa Basmati 1121 family

2d: Taraori/Kernel family

4a: Pusa Basmati 1509 family

4b: Pusa Basmati 1 family

How to identify newly developed varieties without reference materials?

Indian Council of Agricultural Research

Indian Council of Agricultural Research

Trait improved: Herbicide (Imazethapyr) tolerance

: AHAS

Rice Pusa Basmati 1985

(Variety)

Rice Pusa Basmati 1979

(Variety)

Trait improved: Herbicide (Imazethapyr) tolerance

- 1. Gene introgressed
 : AHAS

 2. Molecular markers used
 : SSR
- 3. Recurrent parent : Pusa Basmati 1509
- 4. Donor parent : Robin
- 5. Salient features :
 - Imazethapyr herbicide tolerant
 - · Average grain yield: 52 q/ha
 - · Maturity: 115 days
 - · Plant height: 110 cm

► RM6844 <</p>

1. Gene introgressed

. Molecular markers used : SSR

Recurrent parent : Pusa Basmati 1121

4. Donor parent : Robin

. Salient features

- Imazethapyr herbicide tolerant
- Average grain yield: 46 q/ha
- Maturity: 133 days
- Plant height: 125 cm

CONFIDENTIAL AND PROPRIETARY - @ Eurofins Scientific (Ireland) Ltd [2025]. All rights reserved. Any use of this material without the specific permission of an authorised representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited.