

Wiertz-Eggert-Jörissen

PAH in Oil and Tocopherols

- Analytical challenges to achieve the EC recommendation -

Sonja Schittko, Holger Fritz, Ansgar Ruthenschrör, Katrin Hoenicke, Robert Gatermann Eurofins Analytik GmbH, Stenzelring 14 b, D-21107 Hamburg, Germany

Introduction

> In 2005 the European Commission (EC) define of a maximum level (MRL) for benzo(a)pyrene (BaP) in different foods. [1]

> At the same time a recommendation require data of 15 (so-called) heavier PAH (SCF PAH) up to October 2006 to prove BaP as a marker. [2]

> Latter one results in new challenges for the analytical part, because seven of the SCF PAH are not included in the analytical scope of the well known EPA PAH.

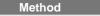
PAH in oil and tocopherols

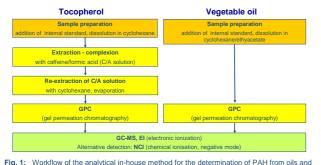
> Oils and tocopherols (generating the vitamin E effect) are produced from oil seeds

> Direct firing (seed drying process) and adsorption (from the environment) are responsible for PAH contamination of vegetable oils.

> Refining reduce amount of these contaminants in the oil. [3]

> Tocopherols are extracted from steam distillates as by-products by refining. [4]

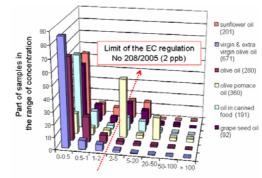

> PAH are enriched in deodorization distillates


> Depending on type of process, different PAH levels result in the tocopherols.

> Tocopherols are residues of the vegetable oil process thus the sample matrix is very complex.

> The analysis of vegetable oils require a simply application of gel-permeation chromatography (GPC) before mass spectrometry (GC-MS).

> The analysis of tocopherols proved to require a more complex clean up (see Fig. 1). [5]



tocopherols

PAH in food – opinion and recommendation of the EC

> The scientific committee in food concluded that benzo(a)pyrene (BAP) may be used as a marker of occurrence and effect of the carcinogenic PAH in food. . Furthermore chemical analyses be continued to collect data on the whole PAH profile to evaluate the contamination of food. [6]

→ The collection of PAH data show a wide range of BaP (determined in 99.3% of

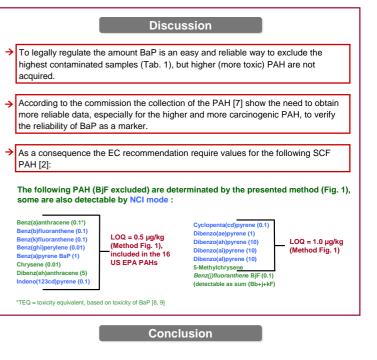
Range of concentration [ppb]

Fig. 2: Part of samples for the amount BaP of different oil samples (number of samples for the oil/pomace) [1,7]

Tab 1: Occurrence of BaP [µg/kg] in different oil samples (source [7])

food groop	number of samples	mean	median	95th percentile	99th percentile
virgin & extra virgin olive oil	671	0.4	0.19	1.2	3.09
olive oil	280	1.7	0.25	2.53	33.73
olive pomace oil	268	17.7	9.57	70.45	134.96
oil in canned food	191	2.62	0.29	9.6	45.57
grape seed oil	92	4.2	0.58	16.86	59.17
sunfolwer oil	201	3.12	0.4	9.0	13.0

[1] COMMISSION REGULATION (EC) No 208/2005 of 4 February 2005 amending Regulation No 466/2001 as regards polycyclic hydrocarbons [2] COMMISSION RECOMMENDATION of 4 February 2005 on the further investigation ons into the levels of polycyclic aromatic hydrocarbons i certain foods (C(2005) 256)


Moret, S., Lanfranco, S. C. (2000) Journal of chromatography A, 882 (245-253)
Tana, M., Demirci, M. (2005) European Food Research Technology 220 (251-245)

[5] A. N. Sagredos, D. Sinha-Roy, Deutsche Lebensmittel-Rundschau 11 (1979) 350-352

[6] Opinion of the Scientific Committee on Food on the risks to human health of Polycyclic Aromatic Hydrocarbons in food, SC/CS/CNTN/PAH/29 Final, 4 December 2002

[7] Report of experts participating in Task 3.2.12, October 2004, COLLECTION OF OCCURRENCE DATA ON POLYCYCLIC AROMATIC HYDROCARBONS IN FOOD [8] Collins, J. et al. (1998) Regul. Toxicol. Pharmacol., 28 (45-54)

[9] Jacob, J.; Greim, H. (Ed's) Polycyclische aromatische Kohlenwasserstoffe (PAH), Forschungsberichte (DFG), Wiley-VCH, Weinheim (2004)

> The collected PAH data confirm the presence of very different amounts of BaP in oil samples.

> While the MRL of the commission exclude the highest contaminated samples. more data of the heavier SCF PAH are necessary to prove the reliability of BaP as a marker.

> The presented method allows to detect PAH in oils and, using a more sophisticated clean up procedure, also in the very complex matrix of the tocopherols.

> The method allows also to detect the required PAH with low detection limits. The more toxic PAH need the detection of lower values thus lower detection limits are necessary.

🔅 eurofins

Eurofins Analytik GmbH, Hamburg, Germany

sonja.schittko@wej.de